Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Comput Struct Biotechnol J ; 19: 1654-1660, 2021.
Article in English | MEDLINE | ID: covidwho-2261625

ABSTRACT

Susceptibility to severe illness from COVID-19 is anticipated to be associated with cigarette smoking as it aggravates the risk of cardiovascular and respiratory illness, including infections. This is particularly important with the advent of a new strain of coronaviruses, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) that has led to the present pandemic, coronavirus disease 2019 (COVID-19). Although, the effects of smoking on COVID-19 are less described and controversial, we presume a link between smoking and COVID-19. Smoking has been shown to enhance the expression of the angiotensin-converting enzyme-2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) key entry genes utilized by SARS-CoV-2 to infect cells and induce a 'cytokine storm', which further increases the severity of COVID-19 clinical course. Nevertheless, the impact of smoking on ACE-2 and TMPRSS2 receptors expression remains paradoxical. Thus, further research is necessary to unravel the association between smoking and COVID-19 and to pursue the development of potential novel therapies that are able to constrain the morbidity and mortality provoked by this infectious disease. Herein we present a brief overview of the current knowledge on the correlation between smoking and the expression of SARS-CoV-2 key entry genes, clinical manifestations, and disease progression.

2.
Comput Struct Biotechnol J ; 18: 2100-2106, 2020.
Article in English | MEDLINE | ID: covidwho-2283789

ABSTRACT

ACE2 plays a critical role in SARS-CoV-2 infection to cause COVID-19 and SARS-CoV-2 spike protein binds to ACE2 and probably functionally inhibits ACE2 to aggravate the underlying diseases of COVID-19. The important factors that affect the severity and fatality of COVID-19 include patients' underlying diseases and ages. Therefore, particular care to the patients with underlying diseases is needed during the treatment of COVID-19 patients.

3.
J Herb Med ; 38: 100635, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2210392

ABSTRACT

Introduction: A worldwide pandemic infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a deadly disease called COVID-19. Interaction of the virus and the Angiotensin converting-enzyme 2 (ACE2) receptor leads to an inflammatory-induced tissue damage. Thymus vulgaris L. (TvL) is a plant with a long history in traditional medicine that has antimicrobial, antiseptic, and antiviral properties. Thymol and Carvacrol are two important biological components in Thyme that have anti-inflammatory, antioxidant, and immunomodulatory properties. This study is a molecular review on the potential effects of TvL and its active compounds on SARS-COV2 infection. Method: This is a narrative review in which using PubMed, Scopus, ISI, Cochrane, ScienceDirect, Google scholar, and Arxiv preprint databases, the molecular mechanisms of therapeutic and protective effects of TvL and its active compounds have been discussed regarding the molecular pathogenesis in COVID-19. Results: Thyme could suppress TNF-alpha, IL-6, and other inflammatory cytokines. It also enhances the anti-inflammatory cytokines like TGF-beta and IL-10. Thyme extract acts also as an inhibitor of cytokines IL-1-beta and IL-8, at both mRNA and protein levels. Thymol may also control the progression of neuro-inflammation toward neurological disease by reducing some factors. Thyme and its active ingredients, especially Thymol and Carvacrol, have also positive effects on the renin-angiotensin system (RAS) and intestinal microbiota. Conclusions: Accordingly, TvL and its bioactive components may prevent COVID-19 complications and has a potential protective role against the deleterious consequences of the disease.

4.
PharmaNutrition ; 22: 100319, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2114875

ABSTRACT

Background: vitamin D influences the immune system and the inflammatory response. It is known that vitamin D supplementation reduces the risk of acute respiratory tract infection. In the last two years, many researchers have investigated vitamin D's role in the pathophysiology of COVID-19 disease. Results: the findings obtained from clinical trials and systematic reviews highlight that most patients with COVID-19 have decreased vitamin D levels and low levels of vitamin D increase the risk of severe disease. This evidence seems to be also confirmed in the pediatric population. Conclusions: further studies (systematic review and meta-analysis) conducted on children are needed to confirm that vitamin D affects COVID-19 outcomes and to determine the effectiveness of supplementation and the appropriate dose, duration and mode of administration.

5.
BBA Adv ; 2: 100044, 2022.
Article in English | MEDLINE | ID: covidwho-1676410

ABSTRACT

Once inhaled, SARS-CoV-2 particles enter respiratory ciliated cells by interacting with angiotensin converting enzyme 2 (ACE2). Understanding the nature of ACE2 within airway tissue has become a recent focus particularly in light of the COVID-19 pandemic. Airway mucociliary tissue was generated in-vitro using primary human nasal epithelial cells and the air-liquid interface (ALI) model of differentiation. Using ALI tissue, three distinct transcript variants of ACE2 were identified. One transcript encodes the documented full-length ACE2 protein. The other two transcripts are unique truncated isoforms, that until recently had only been predicted to exist via sequence analysis software. Quantitative PCR revealed that all three transcript variants are expressed throughout differentiation of airway mucociliary epithelia. Immunofluorescence analysis of individual ACE2 protein isoforms exogenously expressed in cell-lines revealed similar abilities to localize in the plasma membrane and interact with the SARS CoV 2 spike receptor binding domain. Immunohistochemistry on differentiated ALI tissue using antibodies to either the N-term or C-term of ACE2 revealed both overlapping and distinct signals in cells, most notably only the ACE2 C-term antibody displayed plasma-membrane localization. We also demonstrate that ACE2 protein shedding is different in ALI Tissue compared to ACE2-transfected cell lines, and that ACE2 is released from both the apical and basal surfaces of ALI tissue. Together, our data highlights various facets of ACE2 transcripts and protein in airway mucociliary tissue that may represent variables which impact an individual's susceptibility to SARS-CoV-2 infection, or the severity of Covid-19.

6.
Ann Med Surg (Lond) ; 73: 103145, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1568485

ABSTRACT

A significant number of patients infected with the new coronavirus suffer from chronic fatigue syndrome after COVID-19, and their symptoms may persist for months after the infection. Nevertheless, no particular treatment for post-disease fatigue has been found. At the same time, many clinical trials have shown the effectiveness of l-carnitine in relieving fatigue caused by the treatment of diseases such as cancer, MS, and many other diseases. Therefore, it can be considered as a potential option to eliminate the effects of fatigue caused by COVID-19, and its consumption is recommended in future clinical trials to evaluate its effectiveness and safety.

7.
Saudi J Biol Sci ; 28(11): 6645-6652, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1313431

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP's can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA's and ERAP's. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA's and ERAP's leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.

8.
J Transl Autoimmun ; 4: 100100, 2021.
Article in English | MEDLINE | ID: covidwho-1203200

ABSTRACT

Impairment of health after overcoming the acute phase of COVID-19 is being observed more and more frequently. Here different symptoms of neurological and/or cardiological origin have been reported. With symptoms, which are very similar to the ones reported but are not caused by SARS-CoV-2, the occurrence of functionally active autoantibodies (fAABs) targeting G-protein coupled receptors (GPCR-fAABs) has been discussed to be involved. We, therefore investigated, whether GPCR-fAABs are detectable in 31 patients suffering from different Long-COVID-19 symptoms after recovery from the acute phase of the disease. The spectrum of symptoms was mostly of neurological origin (29/31 patients), including post-COVID-19 fatigue, alopecia, attention deficit, tremor and others. Combined neurological and cardiovascular disorders were reported in 17 of the 31 patients. Two recovered COVID-19 patients were free of follow-up symptoms. All 31 former COVID-19 patients had between 2 and 7 different GPCR-fAABs that acted as receptor agonists. Some of those GPCR-fAABs activate their target receptors which cause a positive chronotropic effect in neonatal rat cardiomyocytes, the read-out in the test system for their detection (bioassay for GPCR-fAAB detection). Other GPCR-fAABs, in opposite, cause a negative chronotropic effect on those cells. The positive chronotropic GPCR-fAABs identified in the blood of Long-COVID patients targeted the ß2-adrenoceptor (ß2-fAAB), the α1-adrenoceptor (α1-fAAB), the angiotensin II AT1-receptor (AT1-fAAB), and the nociceptin-like opioid receptor (NOC-fAAB). The negative chronotropic GPCR-fAABs identified targeted the muscarinic M2-receptor (M2-fAAB), the MAS-receptor (MAS-fAAB), and the ETA-receptor (ETA-fAAB). It was analysed which of the extracellular receptor loops was targeted by the autoantibodies.

9.
Gene Rep ; 23: 101077, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1135340

ABSTRACT

Upregulation of Angiotensin Converting Enzyme-2 (ACE2) was frequently observed in patients with lung cancer. Interestingly, our recent study revealed that the same ACE2 receptor was also strongly upregulated in lungs during SARS-CoV2 infection. Therefore, it is possible that the upregulated expression of ACE2 in lung tumors might increase the susceptibility to COVID-19 infection in lung cancer patients. However, the molecular mechanism for the regulation of ACE2 is known neither in lung tumors nor in COVID-19. Under this review, we attempt to identify transcription factors (TFs) in the promoter of ACE2 that promote the expression of ACE2 both in COVID-19 infection and lung cancer. This review would decipher the molecular role of ACE2 in the upscaled fatality of lung cancer patients suffering from COVID-19.

11.
JACC Basic Transl Sci ; 5(5): 501-517, 2020 May.
Article in English | MEDLINE | ID: covidwho-1023614

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has resulted in a proliferation of clinical trials designed to slow the spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Many therapeutic agents that are being used to treat patients with COVID-19 are repurposed treatments for influenza, Ebola, or for malaria that were developed decades ago and are unlikely to be familiar to the cardiovascular and cardio-oncology communities. Here, the authors provide a foundation for cardiovascular and cardio-oncology physicians on the front line providing care to patients with COVID-19, so that they may better understand the emerging cardiovascular epidemiology and the biological rationale for the clinical trials that are ongoing for the treatment of patients with COVID-19.

12.
Acta Pharm Sin B ; 11(1): 222-236, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-871726

ABSTRACT

Lianhuaqingwen (LHQW) capsule, a herb medicine product, has been clinically proved to be effective in coronavirus disease 2019 (COVID-19) pneumonia treatment. However, human exposure to LHQW components and their pharmacological effects remain largely unknown. Hence, this study aimed to determine human exposure to LHQW components and their anti-COVID-19 pharmacological activities. Analysis of LHQW component profiles in human plasma and urine after repeated therapeutic dosing was conducted using a combination of HRMS and an untargeted data-mining approach, leading to detection of 132 LHQW prototype and metabolite components, which were absorbed via the gastrointestinal tract and formed via biotransformation in human, respectively. Together with data from screening by comprehensive 2D angiotensin-converting enzyme 2 (ACE2) biochromatography, 8 components in LHQW that were exposed to human and had potential ACE2 targeting ability were identified for further pharmacodynamic evaluation. Results show that rhein, forsythoside A, forsythoside I, neochlorogenic acid and its isomers exhibited high inhibitory effect on ACE2. For the first time, this study provides chemical and biochemical evidence for exploring molecular mechanisms of therapeutic effects of LHQW capsule for the treatment of COVID-19 patients based on the components exposed to human. It also demonstrates the utility of the human exposure-based approach to identify pharmaceutically active components in Chinese herb medicines.

13.
JACC Basic Transl Sci ; 5(9): 871-883, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-613132

ABSTRACT

Using serial analysis of myocardial gene expression employing endomyocardial biopsy starting material in a dilated cardiomyopathy cohort, we show that mRNA expression of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) cardiac myocyte receptor ACE2 is up-regulated with remodeling and with reverse remodeling down-regulates into the normal range. The proteases responsible for virus-cell membrane fusion were expressed but not regulated with remodeling. In addition, a new candidate for SARS-CoV-2 cell binding and entry was identified, the integrin encoded by ITGA5. Up-regulation in ACE2 in remodeled left ventricles may explain worse outcomes in patients with coronavirus disease 2019 who have underlying myocardial disorders, and counteracting ACE2 up-regulation is a possible therapeutic approach to minimizing cardiac damage.

14.
Cureus ; 12(6): e8411, 2020 Jun 02.
Article in English | MEDLINE | ID: covidwho-600042

ABSTRACT

The novel coronaviruses causing severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19) have been shown to utilize angiotensin-converting enzyme 2 (ACE2) as the receptor for entry into the host cells. The involvement of the renin-angiotensin system (RAS) in the evolution and pathogenesis of lung diseases has been implicated in recent years. The two enzymes of RAS, angiotensin-converting enzyme (ACE) and ACE2, serve a contrasting function. ACE helps in the formation of angiotensin II (AGII) from angiotensin I (AGI), and ACE2 cleaves AGI and AGII into AG (1-9) and AG (1-7) respectively. The ACE-induced AGII has vasoconstrictor and pro-inflammatory properties via AT1R, whereas ACE2 has been shown to protect against lung injury. The less spoken about AGII receptor, angiotensin receptor type 2 (AT2R), has anti-inflammatory and anti-fibrotic effects in lung tissue and may be of significance in light of the lung pathology presentation in COVID-19. A review of articles searched in PubMed and peer-reviewed journals of importance was done using search terms "ACE2," "AT2," "SARS," and COVID-19." Lung involvement in both SARS and COVID-19 has been very severe and suggestive of severe inflammatory and immune reactions. Animal studies have shown that ACE2 and AT2 receptors counter the pro-inflammatory and other effects mediated by angiotensin II by their vasodilator, anti-inflammatory, anti-fibrotic, and anti-proliferative effects. They have been shown to protect against and revert acute lung injuries. The instrumental role of recombinant ACE2, AT2 receptor agonists, and AT1 receptor blockers may be helpful in the treatment of COVID-19.

15.
JACC CardioOncol ; 2(2): 254-269, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-72216

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has resulted in a proliferation of clinical trials designed to slow the spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Many therapeutic agents that are being used to treat patients with COVID-19 are repurposed treatments for influenza, Ebola, or for malaria that were developed decades ago and are unlikely to be familiar to the cardiovascular and cardio-oncology communities. Here, we provide a foundation for cardiovascular and cardio-oncology physicians on the front line providing care to patients with COVID-19, so that they may better understand the emerging cardiovascular epidemiology and the biological rationale for the clinical trials that are ongoing for the treatment of patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL